STATIONARY SUPERSONIC CONDUCTING GAS FLOW
IN A CHANNEL WITH NONCONDUCTING WALLS
UNDER WEAK MAGNETOHYDRODYNAMIC INTERACTION

E. K. Kholshchevnikova

A solution of the problem of flow in a channel with nonconducting walls for a small mag-
netohydrodynamic interaction parameter N is obtained by numerical methods, In the 0-10
range of variation of the Hall and magnetic Reynolds number parameters the distributions
of the electrical parameters and the average (over the cross section) andlocal gasdynamic
flow parameters are computed for two different geometries of the applied magnetic field.
It is shown that an increase in the Hall and magnetic Reynolds number parameters is ac~
companied by a diminution in the Joule dissipation and the perturbation of the average
{over the cross section) gasdynamic flow characteristics. Tt is disclosed that the distri-
bution of the gasdynamic parameters over the channel cross section is extremely non-
monotonic in the end current zones,

When studying different magnetohydrodynamic apparatus, it is very important to clarify the influence
of the zone of magnetic-field inhomogeneity on the flow characteristics. The system of equations describ-
ing the gas flow in such zones includes the gasdynamics equation (with electromagnetic forces and Joule
dissipation inserted in addition) and the electrodynamics equations for the electrical currents, the potential,
and the magnetic field. For a small parameter N, the electrodynamics equations are solved independently
of the gasdynamics equations, and the distributions of the electrodynamic forces and Joule-heat liberation
found with their use are then utilized in the gasdynamics equations to determine the perturbed gas flow.

An extensive bibliography [1-7] is devoted, at present, to the analysis of the electrical field in chan~
nels by means of given distributions of the gasdynamics parameters. The basic factors affecting the elec~
trical field are the geometry of the applied magnetic field, the Hall parameter B, and the magnetic Reynolds
number Ry,. The influence of each of these factors is examined separately in the papers listed. The com-
bined influence of the paramters g8 and R,,, is considered in [6, 7], but for the simplest magnetic-field geom-
etry. The solutions presented in the papers have been obtained by analytical methods.

The method of small parameters (see [8], for instance) is also utilized in magnetic hydrodynamics.
Comparatively few papers [9-11] are devoted to the analyses of supersonic gas flows in channels with end
magnetic-field zones. The computations presented were hence limited to cases of special magnetic-field
geometry and B = 0, Ryy= 0.

The influence of the Hall parameter and the magnetic Reynolds number on the electrical and gasdy~
namic characteristics of a conducting gas flow is studied below in zones of magnetic-field inhomogeneity
for a small interaction parameter N.

1. Let us consider the motion of a perfect gas with constant specific heats and constant conductivity
o in aplanechannel | x|<w~, 0 <y <h with nonconducting walls (Fig. 1) in the presence of an external inhomo-
geneous magnetic field, which can be represented after averaging over the transverse coordinate z as

B. =(0, 0, B, ()}
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The system of magnetohydrodynamic equations includes the continuity, motion, energy, Ohm's law,
and Maxwell equations, For N« 1 the equations can be linearized with respect to this parameter [8].

In a first approximation the solution of the system of equations is sought in the form
v=vo+Nviy, p=p+Np, o=p,+No
B=By+ NBy;, o=g,- Ny, i=h+Ni
Here v is the velocity, p is the pressure, p is the gas density, B is the magnetic-field induction, ¢ is
the electrical potential, j is the current-density vector; the subscript 0 denotes the flow parameters un~
disturbed by the magnetic field and the electrical quantities computed by means of the undisturbed gas-

dynamic parameters, while the subseript 1 denotes the perturbations in the gasdynamic and electrical quan-
tities.

It has been shown in [8] that the system of gasdynamics equations for a flow undisturbed by the mag-
netic field in a plane channel will be satisfied by the distributions

vo = (o (), 0,0), pg=00(y), po= const (1.1
The Maxwell and Ohm's law equations are in the case under consideration
Jo= — Vo + vo x by — Boj, x By (1.2)
rotbhy= R.j, divj,=0, divh, =0

Following [8], let us write the equations for the perturbations of the gasdynamic parameters for p;=
W= 1: .

duy om v op 1.3
—3}“_}_ dx = far dz *—W—fy (1.3)

ap1 Juy dos apy Ip
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T il fy=—1wbs ¢= (v — 1){?'9:02 + fyog)y ay = 1/ M,

Here a, and M, are the speed of sound and the Mach number of the unperturbed flow, y is the ratio be-
tween the specific heats, u, and v, are components of the perturbed velocity vector; the magnitudes of the
electromagnetic forces f= (fk,fy) and the Joule dissipation g are assumed known from the solution of the
system (1.2).

The systems (1.2) and (1.3) are written in dimensionless variables which are introduced by means of
the following formulas:

v =Uy, B=DB*h 2°=zh, y°=yh, p°=rp*p, p°=p*U%

. s*UB* UB*h et B*
F=— i ¢=—09, b=——, B,=

bno*Uh Q1 .4)

&2

Here U is the average velocity (over the cross section) at the entrance to the channel, h is the chan~
nel height, B*, p*, o* are the characteristic magnetic induction, density, and electrical conduetivity, e and
m are the electron charge and mass, 7 is the time between electron collisions with an ion, and ¢ is the speed
of sound in a vacuum; the degree symbol denotes dimensional guantities.

The interaction parameter N by means of which the linearization is carried out is defined as follows:

SRB,

N =—5—

Let us utilize the condition that the normal current Jy does not flow through the upper and lower walls
of the channel and the condition of no longitudinal current j; at + « as the boundary conditions for the solu-
tion of the system (1.2).

Let us consider that there is no electromagnetic field at the channel entrance {for x —~—w=), and there-
fore, the perturbations of all the gasdynamic quantities are zero. Therefore, the boundary conditions for
the solution of the system (1.3) are

W=y =p=0=0a z->-—o0



Moreover, from the condition that the fluid does not flow through the upper and lower channel walls
we will have, for the transverse velocity component,

vy=0 a yp=0, p=1

Let us note that from the system (1.3) it is easy to find the gasdynamic parameters, averaged over
the channel cross section. Indeed, let us integrate the first, third, and fourth eguations of the system (1.3)
over the channel cross section. We then obtain the following equations for the averaged quantities:
d ¢ur> d<{p1> d d
dzl + dI: ==, uflil) + fil::l) =0 (1.5)
1

d<p1> 1 d<pd
Fraa T di =gy, ®)= S%dy, M, = const
o

2. Let us turn to the electrical part of the problem. For convenience, let us omit the subseript 0
from the electrical quantities in the system (1.2). Let us represent the magnetic field in the form of the
sum

b=b,--b, 2.1)
Here b, is the applied field, and b; is the induced field caused by currents flowing in the gas.
The real external field b, always satisfies the equation rot b ¢=0. We hence obtain from (1.2)
roth, = R,j (2.2)

Let us average the Ohm's law (1.2) and Eqg. (2.2) with respect to the coordinate z, Neglecting the
correlation terms and considering the unperturbed velocity vector to have just the longitudinal component
u,fy) {see (1.1)] and the magnetic field projections bx and by on the coordinate axes to be zero on the walls
z=const, we obtain from (1.2) and (2.2)

. a . . 0 .

]x:__a%)"""ﬁ]‘yba ]y:”“”}%"_ uOb“lL'B]xb
.4 ab; = — 1% b= (Os 0, b{z}) 2.3)
=R Ty v R oz ° b=1>b,+ b,

Here jx, jy, ¢, b, be, b; are quantities averaged with respect fo the coordinate z,

Differentiating jy with respect to y, iy with respect to x and subtracting the second expression from
the first, we will have after manipulation

¥ ¥ d
I ST L T S T LS 2.4)
az? E mE T G dz 3y dz
b, X , b,
b* = 5, Jx = YA W= —""3; (2.5)
m

Let us consider the boundary conditions needed for the solution of (2.4). As has been mentioned above,
jp=0 at y=0,y=1; je=0 a x=Ho0 (2.6)

Since the end currents are quite small, in practice, at distances on the order of several calibers (h)
from the domains of an abrupt change in the magnetic field, then the left and right channel boundaries can
be selected in place of £« in such a way that they would be at a finite but sufficiently remote distancefrom
the mentioned domains (Fig. 1). Hence, taking account of (2.5), we obtain the following boundary conditions
to solve (2.4):

b*=0 at y=0,y=1; b*=0 a z=z, =2 2.7

It is seen from (2.4) that for a homogeneous applied field b, the term dependent on the Hall parameter
B will not enter this equation, In this case the parameter 8 can influence the solution of the problem by
means of the boundary conditions, for example, if there are portions of the channel walls occupied by elec-~
trodes. In cases when the parameter § does not enter the boundary conditions, the distributions of the elec-
trical currents and the induced fields are independent of the effect of anisotropy of the conductivity; how-
ever, the distribution of the electrical potential is a function of the parameter § (see [7]), as follows from
Ohm's law.
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Using the Ohm's law (2.3), Eq. (2.5), and the boundary conditions (2.6) and (2.7), some useful rela-
tions can be obtained.

Indeed, let us integrate (2.3) for jx with respect to y between 0 and 1 and with respect to x between
—o and +e, Then taking into account that in a channel of unit width with nonconducting walls and constant
velocity v=u;= 1, the dimensionless Joule dissipation is determined by
40 1

Q= S Siybd:r:dy (2.8)
G
and putting ¢ (~=, y)=0, we arrive at the equality
1
9> = \o(+ =, y)dy =80 (2.9)
0

If b (+) =0, then from the expression (2,3) for jy it follows that the potential at +« is independent of
v. In this case we will have in place of (2.9)

@ (+ o) = pQ {2.10)

Therefore, the relations (2.9) and (2.10) connect the magnitude of the Joule dissipation with the lon-
gitudinal potential difference in the presence of anisotropy in the conductivity.

When the Hall parameter 8 is zero and the current picture is symmetrical relative to the channel
axis, the following expression for the Joule dissipation can be obtained from (2.8):

1

+e0 )
0=2§ i:i*fl(”dxv L@ = § =)z vy (2.11)
e e

Let us note that the magnitude of the end current flowing through a given channel cross section is
defined by

1
1) = § Iy

This quantity is usually measured in experiments by a Rogowskicoil. Computations showed that the
ratio between the quantities I and I, is a slightly varying function and fluctuates between the limits 2.4-3.4.
For the majority of cases I/I;~3. Utilizing this relationship, I, can be found by means of the values of I
found in experiments,and the approximate value of Joule dissipation is calculated by means of (2.11}. Since
the product of dbe/dx by I; enters in the integrand of the formula for Q, this product will introduce the main
contribution to Q in the zones of abrupt changes in the magnetic field,where the derivative dbe/dx is large.
The extent of such zones is usually small, and hence an approximate estimate of Joule dissipation by {2.11)
is not difficult,

3. Equation {2.4) is an equation of elliptic type. One of the iteration methods, the method of successive
displacements (Zeidel' method) with acceleration by the Lyusternik formula (see [12, 130}, was utilized to
solve this equation. Writing (2.4) in finite differences corresponded to a five-point approximation of a sec~
ond-order differential equation. The error in calculating the induced field b; * was hence a gquantity on the
order of the square of the mesh spacing OGY,
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The following values of the parameters were selected for the com~

B, Ry=5, 4;=1, by=b, putation:

(/71) %=/.f ﬁ = 031: 31 5, 10, Rm == (, 1, 5, 10, Zy = —3.5
L Zy=35h=01at Rp=0; z,=45 k=01 at Ry, =1 (3.1
__gz;///

2, =15, h=13 at By =>5; 2y = 8.5, A== 2t R, = 10

=3

The right boundary of the channel x, was chosen in such a way as to
take account of the stagger of the end currents in the longitudinal direc-
tion for large values of R, (see [7]). The tendency of jy to zero on ap-
proaching the right boundary was the criterion for the correctness of the

y ,\ " selection of x,. The values of the mesh spacing h were bounded by the
operational memory of the electronic computer (the computations were
Myt 5] carried out on the BESM~3M and M~220 electronic computers with a 4096~
<&@ cell memory capacity), The computation time for one version was 2-3
Fig. 3 min,

The total magnetic field b=bg +Rmbi*, the electrie-current densities
jx and jy, and the magnitudes of the electrical potential and Joule dissipa-
tion currents I and I; were calculated from the induced magnetic fields b;* found as a result of solv-
ing (2.4).

The computations were performed for two unperturbed velocity profiles:

Viy for Oy <025
=1, up{y)= {1 for 0.25<y<0.75
Véi—4ay for 0.5y <t

The functions

» _{e“x"fc: 2 <—052>4+05 . [z4+05fr z2<0
er —

i for —0.5<32<+05 ! z—05faq >0
enx*f% @
—— *
beg = Vites' =13

were considered as the applied magnetic field bg.
The functions bgy and bg, and the velocity profiles ug=1 and uy{y) are pictured schematically in Fig. 1.
To check the accuracy of the computation, the magnitude of the Joule dissipation Q calculated for the
case 8=0, Rm=0, uy=1, be=bgy; was compared with the value of Q obtained by the Fourier method from

the solution of the Laplace equation for the potential, The comparison showed that both quantities agree
to the accuracy of the first three significant figures.
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Preliminary computations for applied magnetic fields by having breakpoints (where dbg/dx under-
goes a discontinuity) showed that the quantity b;* is not calculated with the required accuracy in these
cases. Hence, smooth functions be; and be, without breakpoints were selected for the analyses. Thefield
be, corresponds to the passage of flux through the entrance and exit zones, when the leading and trailing
turns of the end currents interact; the field be, corresponds to the case of "pure" entrance of the flux into
the magnetic field,

The resulis of computations of the electrical characteristics of the channel are presented in Fig. 2.

Shown in Fig. 2a and b are the dependences of the total magnetic field b and the current I flowing
through half the channel cross section on the coordinate x for different Ry, numbers for an applied fieldbg,.
As we see, as the magnetic Reynolds number increases, the b(x) curves shift in the direction of the motion;
in turn, this results in staggering of the currents downstream in the gas. The increase in Ry, is accom~
panied by a diminution in the magnitude of the end currents.

It is seen from Fig. 2¢, d that as the Hall and magnetic Reynolds number parameters grow, the Joule
dissipation diminishes; however, this diminution is insignificant for small 8 and Ry (~1-2),

Fig. 2e illustrates the increase in the longitudinal potential difference with the growth in the Hall
parameter 3 [see (2.9)].

Moreover, it follows from computations of the current densities that a shift in the centers of the end-
current turns from the chamnel axis to the wall (to the lower wall in the case under consideration) oceurs
in the presence of anisotropy in the conductivity, The magnitude of this shift is slight: it is 15% of the
channel height for 8= 10,

4. To calculate the average perturbation of the gasdynamic quantities over the cross section, the
averaged electromagnetic forces and Joule dissipation found for the solution of the electrical problem were
substituted into the system (1.5). The system (1.5) was then integrated by the Runge-Kutta method by a
standard program. The dependences (p,)(x) and {u;) (x), calculated for the field bg=be; in the supersonic-
flow case, are presented in Fig. 3. Characteristic sections of more and less abrupt flux deceleration are
noted on the curves. The sections of more abrupt deceleration correspond to flux passage through the do-
main of theleading and trailing turns of the end currents. As the number M, increases, the absolute value
of the perturbations decreases. Let us note that diminution in the pressure perturbations as My grows is
connected with the kind of lack of measurement: p°=p*v’p; if the pressure refers to the unperturbed pres-
sure py"=p’(~ =), then the relationship p* =p¥p’(~ )= v M,’p will hold,

Hence, it is seen that as M, increases, the true pressure perturbations grow,

A calculation of the perturbation of the average gasdynamics parameters for the external magnetic
field be, showed that there is just one section of abrupt deceleration as the flux passes through the region
of one turn of end current. The curves are analogous to the curves in Fig. 3 in the rest,

An increase in the Hall and magnetic Reynolds number parameters is accompanied by a diminution
in the perturbations of the gasdynamics parameters averaged over the cross section, as follows from com-~
putations, and this is connected with the corresponding diminution in the Joule dissipation.

Computations performed for a subsonic flow showed that the perturbations of the mean velocity are
positive in this case, while the pressure perturbations are negative.

5. Knowing the magnitudes of the electromagnetic forces and the Joule dissipation at any point of the
channel, the local perturbations of the gasdynamics parameters can be found from the solution of the sys-
tem (1.3). The system (1.3) was solved by the method of characteristics for the supersonic-gas-flowease.

For M, > 1 three families of characteristics exist: two families of Mach lines (first and second family
characteristics) and streamlines,

The differential equations of the first and second family characteristics and their corresponding com-
patibility relationships are
dy::ika?x, kmifVMcz—‘i
k(A — o) [, —aif, +q (5.1)
dp1 + (4 k) dog — T do=0
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The plus sign here refers to the first family characteristics, and the minus sign to the second family
characteristics.

The streamlines are lines parallel to the channel axis (dy=0). The relationships
dus - dp1 — fx dz =0, dp1— a?dpr — gdz =0 (5.2)
are satisfied along the streamlines.

An orthogonal mesh of points was selected for the numerical solution. The spacing hy in the y direc-
tion was taken equal to /12 for Ry, =10 and 1/24 for all the remaining R,,. The spacing hy in the x direction
was determined from hx=hy/2k.

The accuracy of the computation was checked from the condition of conservation of the discharge.
For hyz 1/12 the difference between the discharge at the exit from the channel and the discharge given at
the entrance is 2.4%, while this difference is 0.1% for hy = You-

The induced fields b; * by means of which the electromagnetic quantities fx, fy, and q in (5.1) and (5.2)
were determined, were calculatedvvlth an h=0.1 spacing.

As we see, the meshes utilized to compute the electrical and gasdynamical parameters do not coin~
cide. For convenience let us call these meshes mesh 1 and mesh 2, respectively. The values of the elec-
tromagnetic quantities at each node of mesh 2 were determined by means of known values of these quantities
at the four closest nodes of mesh 1 by using linear interpolation in two directions (x and y).

Let us note that the program for a simultaneous computation of all the electrical and gasdynamical
parameters with the requisite accuracy does not fit within the operational memory of the machine. Hence,
to raise the accuracy of the calculations, the perturbations of the local gasdynamical parameters had to be
computed by an individual program including just part of the program for the electrical problem referring
to calculation of the induced fields bj*. The time to compute one modification was 5-6 min,

The perturbations of the local gasdynamical parameters are presented in Figs. 4-7. All the depen-
dences presented in the graphs refer to the case of an applied magnetic field be, (clean entrance). The solid
curves appearing in Figs. 4-6 correspondtothe values of the parameters 8 =0, Ry =0, M= 5; while the
dashed curves have been constructed for the case g = 10, R;,,=0, M= 5. The numbers on the curves cor-
respond to the following values of x:

No 1 2 3 4 5 [4
z = —0.317 0.5 1.32 2.85 3.56 3.44

It is seen from the figures that the gasdynamics parameters in the end current zones are distributed
extremely nonuniformly over the channel section. The currents flowing in the gas exert force and thermal
effects on the supersonic flux, The longitudinal electromagnetic forces in the leading half of the turn of
end current act in the motion direction and accelerate the gas, while the electromagnetic forces in the
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trailing half of the turn are directed oppositely to the gas motion and decelerateit. Transverse electro-
magnetic forces directed towards the channel axis originate at the walls; these forces are maximal in the
section passing through the center of the turn. Joule-heat liberation decelerating the supersonic flux oc-
curs within the whole volume occupied by the end current. The greatest Joule heating occurs near the walls.
Let us note that the leading portion of the turn is in the domain where the magnetic field is slight, Hence,
the electromagnetic forces are small here, and Joule dissipation exerts the main influence on the flux,

As a result of the mentioned effects, the pressure at the walls rises in the domain of the leading part
of the run, and compression waves are propagatedthere from along the characteristics (Fig. 4). The pres-
sure at the walls diminished in sections close to the center of the turn because of the transverse eleciro-
magnetic force; consequently, rarefaction domains originate at some part of the walls. Rarefaction waves
are generated in these domains. The perturbations produced at the walls are propagated along the char-
acteristics within the channel and are magnified considerably at the axis. Moreover, local perturbations
which are combined with the perturbations arriving at a given point from other domains of the channel, exist
at each point. Let us note that because of the inertia of the gas particles the zones of greatest perturbation
of the parameters are shifted downstream relative to the zone of greatest force and thermal effects on the
flux. Perturbations originating in the zone of the inhomogeneous magnetic field do not vanish after the flux
has passed this zone. The propagation and reflection of the originating perturbations from the walls result
in the formation of perturbations in the gasdynamical parameters which are fluctuating in structure, Anal-
ogous phenomena were noted in [11]. Under real conditions the perturbations are quenched at some dis~-
tance from the end current zone because of the presence of viscosity. This examination is made in a lin-
ear approximation for an inviscid gas; hence, the perturbations are not suppressed here.

The perturbations in the longitudinal velocity (Fig. 5) are connected with the pressure perturbations.
In those domains where the pressure rises, the gas is decelerated, while domains of relative acceleration
of the gas (curves 4, 5) appear in the reduced pressure domains. The velocity and pressure perturbations
at the walls are equal in absolute value and opposite in sign (this follows from (5.2) and the condition Sfx=0
at the walls). The transverse-velocity perturbations are of the same order of magnitude as the longitudinal-~
velocity perturbations. On the average the gas is decelerated during passage of the end current zone.

The density perturbations are shown in Fig. 6. As we see, the density perturbations for large Mach
numbers M; are an order of magnitude greater than the velocity and pressure perturbations,

It has been mentioned inSection 3 that anisotropy in the conductivity causes a shift in the center of
the end current turn to the lower wall of the channel, Consequently, the Joule dissipafion and transverse
electromagnetic force at the lower wall become consider ably greater than at the upper wall, which results,
in turn, in an essential rearrangement of the flow. The profiles of the perturbations in the gasdynamical
quantities become nonsymmetric relative to the channel axis (see the dashed curvesin Figs.4, 5, 6). The
density diminishes at the lower wall and increases as compared with the case B =0 at the upper wall. There~
fore, a slight asymmetry in the end current exerts a considerable influence on the distribution of the gas~-
dynamical parameters over the channel cross section.

As computations have shown, the influence of the magnetic Reynolds number reduces mainly to a
downstream shift in the current picture. The distribution of the perturbations in the gasdynamical parame-
ters hence has the same form as for Ry =0, but a noticeable perturbation in the flow is started for large
values of x are compared with the case Ry =0.

The Mach number of the unperturbed flux M, exerts a considerable influence on the perturbations of
the gasdynamical parameters (Fig. 7). As has been mentioned above, the perturbations in the gasdynamical
parameters are fluctuating in structure. As M, changes, the nature of these fluctuations changes. A growth
in Mach number is accompanied by a strong increase in the density perturbations, where the veloeity and
pressure perturbations hence remain of the same order of magnitude as for low M; numbers,

In conclusion, the author is grateful to A. B. Vatazhin for useful comments and constant attention to
the research and to I. U. Tolmach for valuable comments.
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